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Abstract
During the winter, the cold wave activity over the mid-high latitudes has profound impacts on agriculture, economic and 
human wellbeing. Such extreme weather events have been connected with the East Asia winter monsoon system and signifi-
cantly influence the climate over the Eurasian continent. However, the multidecadal variabilities and regional interconnections 
of the cold wave activity across the Northern Hemisphere are lesser-known. In this study, we investigate the multidecadal 
variations in the cold wave frequency (CWF) and find an inverse relationship between Greenland and central Eurasia. 
Observational and modeling evidence suggests that the Atlantic Multidecadal Oscillation (AMO) is likely to be the driving 
force of the multidecadal seesaw in CWF, while the effects of the Arctic sea ice are very limited. The increased sea surface 
temperature (SST) in association with the AMO warms the subpolar troposphere and weakens the predominant westerlies 
over mid-high latitudes, resulting in positive geopotential height anomalies over the subpolar region. This further weakens 
the Icelandic Low and strengthens the Siberian High, which directly induces the warming (cooling) over Greenland (central 
Eurasia). There is a strong coherence between the mean state of surface air temperature and temperature extremes. The 
AMO-induced warming/cooling in Greenland/central Eurasia corresponds well with less/more frequent cold wave activi-
ties. Our results provide new insight into the multidecadal variability of cold wave activities and suggest that the CWF in 
the Northern Hemisphere may be interlinked.
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1  Introduction

Frequent cold weather extremes during the boreal winter, 
such as cold waves (CWs), snowstorms, and freezing rain, 
tend to be increasing in the Eurasian continent recently 
(Cohen et al. 2012; Liu et al. 2012; Mori et al. 2014). For 

example, changes in the average winter air temperatures in 
East Asia can be attributed directly to the East Asian winter 
monsoon (Wang et al. 2009; Wang and Chen 2014). The 
sea-land thermal difference is an essential driver of the win-
ter monsoon since the continental radiative cooling effect 
is much stronger in the land than in the ocean. The cold 
waves in Eurasia often correspond to enhanced Siberian 
High, which leads to an intensified winter monsoon. Thus, 
an increase of cold wave frequency (CWF) in Eurasia can 
be a source of increased cold extremes during winter in East 
Asia (Gong et al. 2001; Wu and Wang 2002a, b; Wu et al. 
2009; Jiang et al. 2013; Jia et al. 2017).

The thermal conditions in Eurasia exhibit a prominent 
interdecadal variability, with a significant cooling trend 
since the 1990 s and persist till the 2010 s (over − 1 °C/
decade) under the circumstances of increased greenhouse 
gases (Li et al. 2015; Sun et al. 2016b). Some studies have 
linked this phenomenon to the global warming hiatus dur-
ing 1998–2013 (Cohen et al. 2012; Huang et al. 2017b; Li 
et al. 2015). The global warming signal may be partially 
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offset by the decreasing trend in land surface air temperature, 
especially over the Eurasian continent. This suggests that the 
greenhouse effect cannot explain the observed temperature 
changes in Eurasia. The cold wave activities are witnessed 
to increase and hit Eurasia more often, corresponding to a 
colder Eurasian winter during the recent decades, conse-
quently resulting in considerable social and economic losses.

The causes of changes in the Eurasian CWF have not 
reached a consensus (Gao et  al. 2015). Various studies 
have pointed out that the reduction of Arctic sea ice and 
the accompanying variations of middle- and high-latitude 
atmospheric circulations during the same period are respon-
sible for the increased Eurasian CWF (Honda et al. 2009; 
Kug et al. 2015). In recent decades, the trends in winter 
surface air temperature at middle and high latitudes in the 
Northern Hemisphere are significantly correlated with the 
Arctic sea ice loss, especially in the Barents-Kara Sea region 
(Li et al. 2019b). There is a positive feedback between the 
Arctic sea ice decline and rapid local air temperature warm-
ing, which involves changes in ice albedo, polar cloud and 
water vapor content, and radiative fluxes (Francis and Vavrus 
2015; Screen and Simmonds 2010; Serreze and Barry 2011). 
Some studies suggested that sea ice reduction and its related 
warming amplification in the Arctic reduce the meridional 
temperature gradients in the lower troposphere. As a result, 
the mid-latitude westerly jet stream weakens, and the propa-
gation speed of large-scale Rossby waves is reduced. This 
further increases the intensity, frequency, and persistence 
of the atmospheric blocking activity. The incursions of cold 
air masses from the Arctic into mid-latitudes of Eurasia 
continents are also enhanced, leading to increased CWF in 
Eurasia (Francis and Vavrus 2015).

However, the impact of Arctic sea ice decline on 
Eurasian wintertime air temperature remains uncertain. 
Several studies have shown that changes in atmospheric 
circulation at middle latitudes lead to the Arctic sea ice 
reduction. For example, the temperature cooling and CW 
activities in Eurasia lead the Arctic sea ice reduction by 
about 1–2 months. This suggests that increased Eurasian 
CWs are unlikely caused by the Arctic sea ice decline but 
are driven by mid-high latitudes atmospheric circulation 
variability, which may also lead to the Arctic sea ice melt-
ing (Kelleher and Screen 2018; Sun et al. 2016c). Recent 
studies have shown that the driving effect of atmospheric 
circulation variability at mid-high latitudes on the Arctic 
sea ice loss is significant (Ding et al. 2019). The contri-
butions of heat and water vapor transport from Eurasia 
to the Arctic are critical in the Arctic warming amplifi-
cation phenomenon (Screen et al. 2012). Various studies 
suggest a weak impact of the Arctic sea ice decline on 
Eurasia CW activities based on model results. There is 
also modeling evidence showing no reliable link between 
Arctic sea ice decline and Eurasian CWF increase (Mori 

et al. 2014; Screen 2017). No significant evidence shows 
that the frequency and intensity of the CWs are intensi-
fied in association with the reduction of Arctic sea ice in 
the observational data (Barnes et al. 2014). Therefore, the 
Arctic sea ice variability may not be the only driving force 
affecting the variations of CWF in Eurasia.

The Eurasian winter climate may also be modulated by 
multiple factors due to its own complexity and the active 
interactions among other components of the Earth system. 
Previous studies demonstrated relationships between the 
Eurasian winter climate and tropical/subtropical sea surface 
temperatures (SST) (Luo et al. 2017; Sun et al. 2015, 2016a, 
2017b; Zhao et al. 2016), which have also been linked to the 
Arctic sea ice loss (Jung et al. 2017; Li et al. 2018; Perlwitz 
et al. 2015; Tokinaga et al. 2017). The role of the Atlantic 
SST multidecadal variability in Eurasian climate change is 
also emphasized (Li et al. 2019a; O’Reilly et al. 2017; Sun 
et al. 2015, 2017b; Wang et al. 2019). As one of the most 
well-known global SST variability patterns at multidecadal 
timescales, the Atlantic Multidecadal Oscillation (AMO; 
Kerr 2000) is recognized to have profound climate effects. 
It affects the climate not only around the Atlantic region 
(Enfield et al. 2001; McCabe et al. 2004; Sutton and Dong 
2012; Sutton and Hodson 2005) but also the remote regions 
(Li and Bates 2007; Lu et al. 2006; Sun et al. 2015, 2017b). 
Additionally, the AMO contributes to the out-of-phase dec-
adal climate pattern (Sutton and Hodson 2005; Feng et al. 
2011). However, most studies on the AMO climatic impacts 
are based on the averages of temperature and precipitation, 
while its effects on the variations of cold extremes and CW 
activity at decadal time scales are little known. Meanwhile, 
several recent studies on winter surface air temperature vari-
ability over mid-high latitude NH have focused on either 
the zonal mean temperature changes (Screen 2014; Cohen 
2016) or a specific region, like North America, and so on 
(Zhang et al. 2012; Mori et al. 2014; Rhines et al. 2017). Yu 
and Lin (2018) pointed out that the wintertime surface air 
temperatures over North Asia and North America co-vary 
at interdecadal time scales, which is linked by extratropi-
cal teleconnection patterns. However, the co-variability of 
CWF in Eurasia and other regions is still unknown (Chen 
et al. 2019).

In this study, by using the observational data, we find the 
multidecadal variabilities of CWF over Eurasia and Green-
land are highly anticorrelated, forming a seesaw pattern in 
the CW activity. We also examine the correlations between 
the cold wave frequency and multidecadal climate variability 
(i.e., AMO) based on the observations/reanalysis and model 
simulations. We also attempt to explain how the multidec-
adal SST variability modulates the CWF seesaw between 
Eurasia and Greenland. This may also have implications for 
better understanding the decadal variability and predictabil-
ity of cold-related extreme events over these two regions.
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2 � Data and methodology

2.1 � Cold wave frequency

Cold waves have various definitions. Cold events can be 
defined as a number of consecutive days when the minimum 
air temperature (TN) values below a certain threshold. Some 
studies have recently developed excess cold factor (ECF) to 
better analyze extreme cold events (Nairn and Fawcett 2013; 
Wang et al. 2016). The ECF considers the cumulative effect 
of maximum air temperature (TX) and TN in a 3-day period 
contrasted with a prior 30-day acclimation period to quan-
tify the intensity of a cold event. The acclimatization period 
used in the ECF considers a wide range of physiological 
adaptation processes (Scalley et al. 2015) that may result in 
human body responses to CWs. This method can be used as 
a better indicator for measuring CWs, and it can be used in 
more various climatic conditions compared with that only 
based on daily values of TN (Nairn and Fawcett 2013, 2015).

Following Piticar et al. (2018), cold waves (CWs) are 
measured by the ECF in this study and calculated based on 
percentile values. The calculation of the ECF contains two 
excess cold sub-indices incorporating both TX and TN. Two 
excess cold sub-indices are given by the following:

where Tmi is the daily mean temperature of day i (Tm 
is the average of TX and TN of the same day i as Tm = 
(TX + TN)/2)) and Tm10i is the 10th percentile of Tm cal-
culated for each calendar day (day i) of the extended win-
ter (November–March).ECIaccl is the excess cold index for 
acclimatization and measures cold stress induced by short-
term temperature contrast, while ECIsigsub-index refers to a 
significant excess cold against long-term climatic conditions. 
In terms of air temperature, the ECIaccl sub-index assesses 
the human body’s acclimatization to its local climate in 30 
days.

Then the ECF is expressed as the following:

The negative values of ECF indicate CW conditions, and 
a CW event is defined as a period of at least three consecu-
tive days. Calculations of CW indices require at least three 
consecutive days, and this is derived from studies on human 
responses to the onset of extremely cold weather, as a sig-
nificant rise in the mortality rate above its antecedent rate 
in cold weather takes at least three consecutive days (Nairn 
and Fawcett 2015; Wang et al. 2016).

(1)ECIsig =
[(

Tmi + Tmi−1 + Tmi−2

)

∕3
]

− Tm10i

(2)
ECIaccl =

[(

Tmi + Tmi−1 + Tmi−2

)

∕3
][

−
(

Tmi−3 +⋯ + Tmi−32

)

∕30
]

(3)ECF = −ECIsig × min
(

−1,ECIaccl
)

We also employ Cold Wave Frequency (CWF) index to 
assess changes in CWs in this study. It is defined as the 
annual number of days that contribute to CWs as identi-
fied by the annual number of individual CWs calculated 
based on ECF that occur in each extended wintertime 
(November–March).

2.2 � Data and index definitions

As we mainly focus on the cold waves in this study, the fol-
lowing data we used are all based on the extended winter 
season (November–March).

The surface air temperatures used in calculating the CWF 
index are derived from the Berkeley Earth Surface Tempera-
ture Project data set (Rohde and Hausfather 2020) for the 
period 1900–2019 and HadGHCND data set (Caesar et al. 
2006) from 1950 to 2014.

The global observational sea surface temperature (SST) 
data set used in this study is the Extended Reconstruction 
SST version 3 (ERSST v3b) data set (Smith et al. 2008) 
and ERSSTv5 data (Huang et  al. 2017a) for the period 
1900–2019. Atmospheric data sets are derived from the 
NOAA ESRL Twentieth Century Reanalysis, version 
2 (20CRv2) data set (Compo et al. 2011), for the period 
1900–2013 and observational data of the surface air tem-
peratures are derived from Climatic Research Unit (CRU) 
data set (Harris et al. 2013) for the period 1900–2019. The 
Pan-Arctic Ice Ocean Modeling and Assimilation System 
(PIOMAS and PIOMAS-20 C) reconstructions of monthly 
Arctic sea ice volume over the period of 1901–2010 are used 
to characterize the multidecadal variations of the Arctic sea 
ice, and the dataset can be downloaded from the following 
link http://​psc.​apl.​uw.​edu/​resea​rch/​proje​cts/​piomas-​20c/ 
(Schweiger et al. 2019).

The AMO index is defined as the area-weighted average 
of SST anomalies over the North Atlantic region (0°–60° N, 
80° W–0°), similar to that defined by Enfield et al. (2001). 
And the index used in this study comes from the NOAA 
ESRL Climate Timeseries, which is calculated based on the 
ERSST data set (Smith et al. 2008). The decadal component 
of the AMO is derived from an 11-year running mean, and 
the long-term trend is removed to isolate the multidecadal 
variability. The Pacific Decadal Oscillation (PDO) Index is 
defined as the leading principal component of North Pacific 
monthly sea surface temperature variability (poleward of 20° 
N) (Mantua et al. 1997).

2.3 � Statistical methods

A two-tailed Student’s t-test is used to determine the sta-
tistical significance of the linear regression and correlation 
between two autocorrelated time series. We use the effective 

http://psc.apl.uw.edu/research/projects/piomas-20c/
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number of degrees of freedom, Neff, which is given by the 
following approximation:

where N is the sample size, and �XX(j) and �YY (j) are the 
autocorrelations of two sampled time series X and Y, respec-
tively, at time lag j (Li et al. 2013; Sun et al. 2015).

The CWF linear trends expressed in this study for both 
datasets are calculated using a nonparametric estimation 
technique based on Sen’s slope estimator (Sen 1968). This 
method is a robust estimation of the linear trends as it makes 
no assumption about the distribution for the residuals. Sen’s 
slope method is much less sensitive to the effect of outliers 
in the time series than the least-squares method. It has been 
widely used in studies of the effects of climate change on 
hydrology and climate extremes (Sun et al. 2019; Zhao et al. 
2016). The statistical significance of Sen’s slope is tested by 
the nonparametric Mann-Kendall method (Zhao et al. 2016).

2.4 � AGCM experiments

A series of atmospheric general circulation model (AGCM) 
experiments are employed in this study to investigate the 
atmospheric circulation response to a specific SST pattern. 
The AGCM model is referred to as primitivE-Equation 
DYnamics (SPEEDY) model developed at the Abdus Salam 
International Centre for Theoretical Physics (Kucharski 
et al. 2013), which is based on a spectral primitive-equation 
dynamical core. SPEEDY is an intermediate AGCM that 
contains eight vertical levels with a horizontal resolution of 
T30 (3.75° × 3.75° grid). It is hydrostatic, and sigma-coordi-
nates and semi-implicit treatment of gravity waves are used.

We conducted AGCM experiments forced by SST varia-
tions in the North Atlantic Ocean. To isolate the impact of 
the North Atlantic SST forcing, we run the AGCM forced 
by raw observed monthly-varying SSTs prescribed over the 
North Atlantic basin (0° –60° N, 80° W–10° E). Climato-
logical mean monthly SSTs are prescribed in other basins 
outside the North Atlantic to highlight the direct impacts of 
the North Atlantic SST variability on the Northern Hemi-
sphere atmospheric circulation. This experiment is referred 
to as NA_EXP. The model integrations start in 1880 and 
run through 2013. An ensemble of five members is gener-
ated by restarting the model using small initial perturbations. 
The first 20 years of all simulations are considered to be a 
spin-up time for simulation, and the analysis is performed 
on the remaining period from 1900 to 2013. The NA_EXP 
experiment is transient runs, and the results of the ensemble 
members from the experiment were averaged and analyzed 
for the period 1900–2013. The simulated responses to the 
AMO SST forcing are defined as the composite differences 

(4)
1

Neff
≈

1

N
+

2

N

N
∑

j=1

N − j

N
�XX(j)�YY (j)

between the AMO warm and cold phases to examine the 
impacts on the atmospheric circulation during the boreal 
winter.

3 � Results

3.1 � Seesaw in cold wave frequency between central 
Eurasia and Greenland at decadal time scales

Figure 1 shows the trend of cold wave frequency (CWF) 
over the Northern Hemisphere derived from two different 
data sets since 1990. Both datasets exhibit opposite signs of 
a long-term trend in CWF, with a strong decreasing trend 
over Greenland (60°–75° N, 60°–45° W) and a significant 
increasing trend over central Eurasia (40°–55° N, 75°–100° 
E). The trend patterns of CWF correspond with the winter-
time surface air temperature, as suggested in the previous 
studies. The cold wave frequency is closely related to the 
surface air temperature cooling (warming) when there are 
more (fewer) CWs. The decline of CWF over Greenland is 
consistent with the recent warming trend (Ding et al. 2014), 
while more frequent CW activities correspond well with the 
cooling over central Eurasia (Screen et al. 2015; Sigmond 
and Fyfe 2016), which is caused by the changes in atmos-
pheric backgrounds (Horton et al. 2015). However, few stud-
ies focus on the reversed tendencies of CWF between central 
Eurasia and Greenland but mainly focusing on individual 
regions (e.g., North America and Eurasia). Our results 
indicate the contrasting long-term trends in CWF between 
Greenland and central Eurasia, further implying a potential 
linkage may exist.

Figure  2 shows the time series of the CWF index 
(defined by the area-averaged CWF). It suggests that the 
CWF in central Eurasia exhibits the opposite phase to that 
in Greenland and the decadal variabilities are significant in 
both data sets (Fig. 2). The correlation coefficients of the 
CWF between central Eurasia and Greenland at decadal 
time scales reach − 0.70 for the period 1900–2019 from 
the Berkeley data set (Fig. 2a) and − 0.72 for the period 
1950–2014 from the HadGHCND data set (Fig.  2b). 
The CWF in the two regions consistently exhibits three 
phase shifts around 1920, 1980, and 2000 for the period 
1900–2019 using the Berkeley data. Also, the recent two 
phase shifts are well captured by the HadGHCND data, 
consistent with the Berkeley data. This supports the high 
coherence of CWF in central Eurasia and Greenland. The 
central Eurasia CWF is low before 1915, as the CWF is 
well below 20d on both interannual and interdecadal time 
scales. More frequent CW activities are observed for the 
period 1920–1980 in central Eurasia, while the CWF in 
Greenland maintains a low phase during the same period. 
The CWF in central Eurasia declines significantly in 
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Fig. 1   The cold wave frequency 
trends over the Northern 
Hemisphere derived from 
a the Berkeley data set for the 
period 1990–2019 and b the 
HadGHCND data set for the 
period 1990–2014. Dotted 
shading indicates the correlation 
coefficients significant at the 
90 % confidence level

Fig. 2   Time series of the raw 
data (thin curves) and 11-year 
running averages (thick curves) 
of the cold wave frequency over 
the central Eurasia (40°–55° 
N and 75°–100° E; red curves; 
left axis in units of days) and 
Greenland (60°–75° N and 
60°–45° W; blue curves; right 
axis in units of days) derived 
from a the Berkeley data set for 
the period 1900–2019 and b the 
HadGHCND data set for the 
period 1950–2014. The long-
term linear trends were removed
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the 1980 and 1990 s and shows a continuous increasing 
tendency afterward. By contrast, the CWF in Greenland 
increases substantially from 1965 to 1985 and declines 
rapidly in the recent decades. The decadal variabilities of 
CWF are negatively correlated between central Eurasia 
and Greenland, which is independent of datasets or ana-
lyzed periods. However, the interannual relationship of 
CWF between Eurasia and Greenland is rather weak and 
insignificant (− 0.13 for the Berkeley data set and − 0.16 
for the HadGHCND data set).

The reversed relationships of CWF between central 
Eurasia and Greenland exist in the long-term trends 
(Fig. 1) as well as decadal variations (Fig. 2), but in this 
study, we mainly focus on the coherence on multidecadal 
time scales. The CWFs in these two regions are signifi-
cantly correlated with opposite phases, referring to as 
the multidecadal seesaw. In the light of that, we define 
the CWF seesaw index using the CWF in central Eurasia 
minus that in Greenland. It indicates that the CWF seesaw 
index turns positive (negative) when the central Eurasian 
CWF is relatively stronger (weaker) than Greenland. In 
Fig. 3, the CWF seesaw index exhibits significant multi-
decadal variability, which is consistent between Berkeley 
and HadGHCND datasets for the period 1900–2019 and 
1950–2014, respectively. The CWF seesaw index shows 
three phase shifts around 1920, 1980, and 2000. For the 
overlapping period, both datasets exhibit a consistent 
decreasing tendency before the 1990 s and a rapid upris-
ing in the recent decades, corresponding to the individ-
ual variation in Fig. 2. The correlation coefficient of the 
CWF seesaw index from the two data sets reaches 0.93, 
indicating the multidecadal seesaw in CWF is robust and 
independent of data selection. For the latter of this study, 
the CWF seesaw index based on the Berkeley data set is 
employed in the following analysis.

3.2 � Relationship between AMO and cold wave 
frequency seesaw

Since the seesaw pattern of CWF between central Eurasia 
and Greenland is revealed from the above, it remains a ques-
tion that which factor plays a forcing role in the CWF see-
saw on multidecadal time scales. A wide range of studies 
indicates that the Arctic sea ice loss in recent years has pro-
found impacts on the regional climate at mid-high latitudes 
(Francis and Vavrus 2012; Overland et al. 2015; Screen et al. 
2013). Previous studies suggested that the recent extreme 
events are linked to the loss of Arctic sea ice and the associ-
ated enhanced warming (Horton et al. 2015; Ma et al. 2018; 
Ma and Zhu 2019). Could the changes in the Arctic sea ice 
dominate the co-variabilities of CWF in central Eurasia and 
Greenland? The observational results suggest that the rela-
tionship between the CWF seesaw and the Arctic sea ice is 
weak. For the spatial correlation pattern (Fig. 4a), the sea 
ice along the Greenland east coast shows a positive correla-
tion, indicating the local effect of sea ice may contribute to 
the CW activities to some extent. However, the overall cor-
relation map exhibits rather weak coherence over the Pan-
Arctic region. The time series of the Arctic sea ice index (sea 
ice volume anomalies) and the CWF seesaw index barely 
match (Fig. 4b), as the correlation coefficient only reaches 
− 0.17. The CWF seesaw experienced a phase shift back in 
the 1920 s, but no significant changes in the Arctic sea ice 
were observed. Overall, the CWF seesaw index and the sea 
ice index are negatively correlated, but it is not statistically 
significant. Moreover, the two series also exhibit consistent 
variations during the 1950 s, contrary to the overall out-of-
phase relationship. Therefore, we may conclude that the time 
series of the Arctic sea ice and the seesaw in CWF is hardly 
corresponded, indicating a limited effect of the sea ice in 
modulating the CWF seesaw. Nevertheless, the contribution 
of the Arctic sea ice cannot be completely ruled out. The 
recent rapid sea ice melting may amplify the sea ice-reflec-
tivity positive feedback that leads to Greenland warming 
(Ding et al. 2014; Outten and Esau 2012; Kug et al. 2015), 
further reducing the CWF in this region. Since the Arctic sea 
ice is unlikely to be the driving force of the CWF seesaw, 
other factors are needed for further inspections.

In addition, several recent studies argued that the SST 
variabilities are responsible for the changes of extreme 
climatic events in the Northern Hemisphere (Ding et al. 
2014; Sigmond and Fyfe 2016; Tokinaga et al. 2017). 
We then inspect the correlation between the CWF seesaw 
index and global SSTs (Fig. 5). A positive correlation can 
be found over the entire North Atlantic Ocean, resembling 
the Atlantic Multidecadal Oscillation (AMO). This uni-
form warming pattern over the North Atlantic basin is con-
sistent between different data sets and different periods. 
Thus, we can infer that the AMO may be connected to the 

Fig. 3   Time series of cold wave frequency seesaw index with 11-year 
running mean derived from the Berkeley data set for the period 1900–
2019 (red curve; left axis in units of days) and the HadGHCND data 
set for the period 1950–2014 (blue curve; right axis in units of days). 
The long-term linear trends were removed. The green dash line indi-
cates zero
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CWF seesaw on multidecadal time scales. Over the Pacific 
Ocean, the western tropical Pacific and northern North 
Pacific exhibit positive correlations, while the eastern 
North Pacific exhibits negative correlation, resembling the 
Pacific decadal oscillation (PDO). The two different data 
sets show good agreement over the North Pacific and west-
ern tropical Pacific, where the most significant SST warm-
ing can be found. This signal can be partially explained by 
the footprint of the remote AMO forcing, as previous stud-
ies highlighted a crucial role of AMO in the western tropi-
cal Pacific and northern North Pacific SST multidecadal 

variability (Sun et al. 2017a; Gong et al. 2020). However, 
noticeable disagreements can be found over the eastern 
North Pacific. For the Berkeley data, the SST cooling is 
relatively weak and insignificant, but for the HadGHCND 
data, the correlation is larger and statistically significant. 
This disagreement may occur largely due to the differ-
ent data lengths. Nevertheless, the relationship between 
the CWF seesaw and the eastern North Pacific SST still 
remains many uncertainties. We also inspect the results 
based on the ERSSTv5 data (Supplementary Fig. 1), and 
the correlation patterns are consistent, suggesting that the 

Fig. 4   a Correlation map between cold wave frequency seesaw index 
derived from the Berkeley data set and the sea ice cover for the period 
1900–2019. b  Time series of 11-year running mean cold wave fre-
quency seesaw index (red curve; left axis in units of days) and Arc-

tic sea ice index (blue curve; right axis in units of 102 km3) for the 
periods 1900–2019 and 1901–2010, respectively. The long-term lin-
ear trends were removed before the analysis. The green dash line indi-
cates zero

Fig. 5   Correlation maps 
between the decadal compo-
nent of cold wave frequency 
seesaw index and SSTs. The 
CWF data are derived from a 
the Berkeley data set for the 
period 1900–2019 and b the 
HadGHCND data set for the 
period 1950–2014. The long-
term linear trends were removed 
before the analysis. Dotted 
shading indicates the correlation 
coefficients significant at the 
95 % confidence level
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connection between AMO and CWF seesaw is robust to 
the choice of SST datasets.

We further examine the relationship of the CWF seesaw 
with the AMO and PDO, as the spatial correlation patterns 
exhibit good resemblance to these two climate modes over 

the North Atlantic and North Pacific basins, respectively. 
Figure 6 shows the time series of the CWF seesaw, AMO, 
and PDO index for the period 1900–2019. The CWF see-
saw index corresponds well with the AMO index at multi-
decadal time scales, and the correlation coefficient between 
them reaches 0.76. The AMO shows turning signs around 
the 1930 and 1980 s, consistent with the turning signs of 
the CWF seesaw index. However, the correlation of the 
CWF seesaw index with the PDO index exhibits less agree-
ment (r = − 0.39). Before the 1960 s, the two series barely 
matched, and no significant coherence can be found, indi-
cating that the PDO unlikely plays a role in modulating the 
CWF seesaw during this period. The CWF seesaw index 
somehow shows an antiphase relationship with the PDO 
index since the 1960 s. It is unknown that whether the con-
nection between the PDO and CWF seesaw is strengthening 
during the recent decades. Nevertheless, the CWF seesaw 
shows more consistent variation with the AMO, as their 
phases largely correspond for the overall analyzed period 
from 1900 to 2019. In this study, we inspect the relationship 
between the CWF seesaw and the AMO, considering the 
AMO exhibits a higher correlation with the CWF seesaw 
over multidecadal time scales.

We further inspect the relationship of the Northern Hemi-
sphere cold wave frequency with the AMO index as well 
as the CWF seesaw index. In Fig. 7a, the seesaw pattern 
in CWF is clearly displayed, suggesting that the CWFs in 
Greenland and central Eurasia are out-of-phase, consistent 
with the above analysis. It also provides evidence that the 
seesaw index we defined is capable of representing the spa-
tial features of CWF over the two specified regions. The cor-
relation map between the AMO and CWF exhibits a seesaw 

Fig. 6   Time series of 11-year running mean cold wave frequency see-
saw index derived from the Berkeley data set for the period 1900–
2019 (blue curve; right axis in units of days) and a  the AMO index 
(red curve; left axis), b the PDO index (green curve; left axis) for the 
same period. The long-term linear trends were removed. The yellow 
dash line indicates zero

Fig. 7   Correlation maps 
between cold wave frequency 
and a cold wave frequency 
seesaw index and b AMO index 
derived from the Berkeley data 
set for the period 1900–2019. 
The long-term linear trends 
were removed before the analy-
sis. Dotted shading indicates the 
correlation coefficients signifi-
cant at the 95 % confidence level
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pattern as well (Fig. 7b), with a negative correlation over 
Greenland and a positive correlation over central Eurasia. 
It indicates that the AMO is closely connected with the 
CWF decadal variabilities over both regions, further verify-
ing the strong temporal coherence with the CWF seesaw 
index (Fig. 6a). The spatial patterns are generally consistent 
between the AMO index and CWF seesaw index, further 
indicating the existence of the seesaw pattern in CWF, for 
which the AMO may be responsible.

3.3 � Physical mechanism

From the above analysis, the AMO is closely correlated with 
the CWF seesaw and may play a crucial role in modulat-
ing the CWF over central Eurasia and Greenland, but the 
effects are opposite. In this study, we investigate the possible 
mechanism of how the AMO influences the CWF seesaw. 
It is known that changes in mean temperature are closely 
linked to the frequency of extreme temperatures (Mearns 
et al. 1984; Meehl et al. 2000). In Fig. 8b, we also inspect the 
relationship between the CWF seesaw index and the surface 
air temperature (SAT). The regression map exhibits a seesaw 
pattern, with a significant cooling over central Eurasia and a 
significant warming center over Greenland. The correlation 
patterns of the CWF seesaw index with both CWF (Fig. 7a) 
and SAT (Fig. 8b) are very alike, indicating that there is a 
strong coherence between the SAT and CWF. That is, more 

(less) cold wave frequency corresponds with cooling (warm-
ing) in surface air temperature over central Eurasia (Green-
land). Here, we inspect the influence of AMO on the North-
ern Hemisphere surface air temperature (Fig. 8a). Greenland 
exhibits a strong warming response, while central Eurasia 
exhibits a cooling response to the AMO, consistent with the 
seesaw pattern in CWF. The CWF and winter air tempera-
ture anomalies consistently show a zonally elongated pattern 
with pronounced anomalies in central Eurasia related to the 
AMO (Fig. 8).

To understand how the AMO and the SAT seesaw over 
Greenland and central Eurasia are connected, we first exam-
ine the climatological geopotential heights at 950 hPa. Dur-
ing the wintertime, the Siberian High (SH) is a dominant 
circulation system that has an influence on the Eurasian con-
tinent with excessively low surface air temperature (Panagio-
topoulos et al. 2005). Meanwhile, the Icelandic Low (IL) is 
another semi-permanent low-pressure system, which is rec-
ognized to have profound impacts on surface air temperature 
over Greenland (van Loon and Rogers 1978; Kushnir 1999). 
Tubi and Dayan (2013) indicate that there is a teleconnec-
tion between SH and IL, and the IL may play a dominant 
role in the variations of SH. During the warm phase of 
the AMO, the Arctic region exhibits positive anomalies in 
geopotential heights, resulting in a weakened IL. Over the 
North Atlantic Ocean, there is a significant dipole pattern 
in response to the AMO, with an increase in geopotential 

Fig. 8   The regression maps of surface temperatures (units: K) onto 
the a AMO index and b  cold wave frequency seesaw index derived 
from the Berkeley data set for the period 1900–2019. The long-term 

linear trends were removed before the analysis. Dotted shading indi-
cates the correlation coefficients significant at the 95 % confidence 
level
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heights over the northern regions (Greenland, Iceland, and 
the Labrador Sea) and a decline over the subtropical North 
Atlantic and the Mediterranean Sea. As a result, the weak-
ened IL reduces the northerlies from the polar region due to 
the smaller-than-normal pressure gradients. With fewer cold 
advection from higher latitudes, the surface air temperature 
exhibits a warm anomaly, corresponding to less frequent CW 
activities. Meanwhile, central Eurasia (especially central 
Siberia) shows significantly increased geopotential heights 
in response to the AMO forcing. As suggested in Fig. 9a, 
the increased geopotential heights over central Eurasia cor-
responds with the climatological SH, which governs the cold 
wave activity over central Eurasia. The anomalous geopoten-
tial heights over the subpolar region also exhibit a quasi-
annular structure corresponding to high-pressure anomalies 
across mid-high-latitude Eurasia. The continental cold high 
in Eurasia, including the SH, is enhanced. Consequently, 
the winter air temperature decreases, corresponding to an 
increase in CWF.

The zonal averaged atmospheric responses to the AMO 
forcing are shown in Fig. 10. It suggests that the impacts 
of AMO not only exist near the surface but also extend to 
the upper levels. The positive phase of AMO, correspond-
ing to the uniform SST warming over the North Atlantic 
basin, can exert opposite temperature anomalies over the 
upper level through an upper-tropospheric anomalous atmos-
pheric circulation response (Ehsan et al. 2020; Nicolì et al. 
2020). As shown in Fig. 10a, there is a dipole pattern in air 

temperature above 300 hPa, with strong upper-level warm-
ing over the mid-high latitudes and relatively weak cool-
ing over the subtropical region. The anomalous tempera-
ture pattern is caused by the underlying ocean heating in 
association with the AMO. According to the thermal wind 
theory, the increased temperature gradients tend to modify 
the winds. The regression of the wind field onto the AMO 
index exhibits consistent results (Fig. 10b). There are anom-
alous easterlies over the upper troposphere, corresponding 
to the temperature dipole. Consequently, the climatological 
westerlies are significantly weakened, further resulting in 
an adjustment in geopotential heights. In Fig. 10c, due to 
the weakened westerlies, the geopotential height increases 
over high latitude regions while slightly decreases over the 
mid-latitude area. Moreover, the geopotential height exhibits 
consistent uplifts from the upper to lower troposphere near 
the Arctic. Thus, the AMO induces positive geopotential 
height anomalies that weaken the IL and strengthen the SH, 
resulting in a seesaw pattern in surface air temperature. In 
addition, the increased geopotential height over the Arctic 
further weakens the upper-level polar vortex. Normally, the 
Arctic cold air is confined within the polar region due to the 
polar vortex, and the zonal westerly winds enclose a large 
pool of extremely cold air. Since the polar vortex is weak-
ened associated with the warm AMO phase, the zonal wind 
weakens, and the Arctic cold air spills into the mid-latitudes, 
which leads to more cold air outbreaks and more frequent 
cold wave events accordingly. This has a profound influence 

Fig. 9   a Climatological geopotential heights at 950  hPa (units: m) 
from reanalysis data set for the period 1900–2013 and b the geo-
potential heights at 950  hPa regressed onto the AMO index. The 

long-term linear trends were removed before the analysis. Dotted 
shading indicates the correlation coefficients significant at the 95 % 
confidence level



1413Multidecadal seesaw in cold wave frequency between central Eurasia and Greenland and its relation…

1 3

on the CWF in central Eurasia (Huang and Tian 2019; Zhang 
et al. 2016). Meanwhile, the weakening of zonal westerlies 
is favorable for warm air from the lower latitudes to move 
into the higher latitudes, decreasing the CWF over Green-
land. The cold AMO phase corresponds to a strengthen-
ing of the polar vortex and zonal westerlies, confining the 
cold air to high latitudes closer to the Arctic and leading to 
CWF increase in Greenland and decrease in central Eurasia, 

respectively. We can conclude that the seesaw patterns in 
SAT and CWF are consistently modulated by the AMO and 
the associated anomalous atmospheric circulation.

We then conduct the AGCM experiment (NA_EXP) to 
investigate the influences of AMO on the atmosphere in 
the numerical model simulation. As shown in Fig. 11a, 
the model reproduces the surface air temperature seesaw 
between Greenland and central Eurasia, and the spatial 

Fig. 10   The zonal averaged a air temperatures (units: K), b 
zonal  winds (units: m/s), and c geopotential heights (units: m) 
regressed onto the AMO index from reanalysis data set for the period 

1900–2013. The long-term linear trends were removed before the 
analysis. Dotted shading indicates the correlation coefficients signifi-
cant at the 95 % confidence level

Fig. 11   The a surface air temperatures (units: K) and b geopotential 
heights at 925 hPa (units: m) regressed on the AMO index in NA_
EXP AGCM simulation for the period 1900–2013. The long-term lin-

ear trends were removed before the analysis. Dotted shading indicates 
the correlation coefficients significant at the 95 % confidence level
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regression pattern is overall consistent with that observed in 
Fig. 8a. It provides model evidence that the AMO is critical 
in the formation of the surface air temperature\CWF seesaw. 
Moreover, the model simulates an annular-like regression 
pattern, with strong warming responses over the Pan-Artic 
regions and cooling responses over lower-latitude regions. 
However, there are still some biases. For example, the model 
overestimates the responses over northern Europe and east-
ern Siberia, and North American cooling is not observed. 
The simulated responses of 950 hPa geopotential height 
(Fig. 11b) also show good agreement with the observed 
pattern. The mid-high latitude regions exhibit a significant 
increase in geopotential heights, corresponding to a weak-
ened IL and strengthened SH. Thus, model simulation sug-
gests that the changes in surface air temperature are directly 
influenced by the anomalous near-surface pressure systems, 
which are further modulated by the AMO, consistent with 
the observations.

We also inspect the upper-level tropospheric responses to 
the AMO in NA_EXP (Fig. 12). Due to the AMO-induced 
North Atlantic warming, the upper-level atmosphere is sig-
nificantly heated by the underlying ocean, exhibiting a strong 
warming pattern as shown in the observation. Although 
the dipole pattern is not fully reproduced, the increased 
temperature gradients are also significant in the model 
simulation. The anomalous meridional thermal differences 
induce strong easterlies that offset the predominant wester-
lies, resulting in a geostrophic adjustment in geopotential 
heights. Note that the location of the weakened westerlies 
exhibits a slight southward shift, which could be related to 
the model performance of ICTPAGCM in simulating the jet 
stream (Kucharski et al. 2013). Nevertheless, the anoma-
lously high geopotential heights are found north of 60° N in 
response to the weakened westerlies, which further leads to 

the high-pressure anomalies near the surface, consistent with 
the observations. The NA_EXP successfully reproduces the 
critical processes that the AMO induces upper troposphere 
warming and the associated upraise in geopotential heights 
over the Arctic, which further modulates the surface air tem-
perature, resulting in Greenland warming and central Eura-
sia cooling. The upper-level atmospheric circulation changes 
result in a weakened polar vortex and consequently a seesaw 
in CWF over Greenland and central Eurasia, corresponding 
to the surface air temperature.

As shown in Figs. 5b and 6b, there is coherence between 
the CWF and the PDO, but only since the 1950 s. To bet-
ter evaluate the role of the PDO, we perform further analy-
sis using the Berkeley dataset from 1950 to 2019 since the 
coherence is relatively stronger during this period. We first 
inspect the correlation between the CWF and the PDO index 
(Supplementary Fig. 2). The CWF in central Eurasia and 
the PDO are significantly correlated. However, although 
the CWF in Greenland is negatively correlated with the 
PDO index, the correlation coefficients are rather weak and 
insignificant, indicating that the influence of PDO on the 
Greenland CWF is very limited. Consequently, the seesaw 
feature in the spatial pattern of PDO-related CWF is rather 
weak in comparison with the observed seesaw pattern in 
Fig. 7a. Therefore, we can infer that the coherence between 
the PDO and the CWF seesaw index after the 1950 s may 
be more related to the central Eurasia CWF counterpart. By 
contrast, the AMO-related CWF responses are prominent in 
both Greenland and central Eurasia, indicating that the AMO 
may play a more important role in the CWF seesaw than 
the PDO. We further inspect the upper-level atmospheric 
circulation responses to the PDO (Supplementary Fig. 3). 
The negative PDO phase can induce upper-level air tem-
perature warming in high-latitude and weaken the subpolar 

Fig. 12   The zonal averaged a  air temperatures (units: K), b 
zonal  winds (units: m/s), and c geopotential heights (units: m) 
regressed on the AMO index in NA_EXP AGCM simulation for the 

period 1900–2013. The long-term linear trends were removed before 
the analysis. Dotted shading indicates the correlation coefficients sig-
nificant at the 95 % confidence level
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westerly jet and polar vortex, which may explain the coher-
ence between the PDO and central Eurasian cold wave 
activity. A previous study suggested that the negative PDO 
tends to weaken the Aleutian Low and further reduces the 
jet stream over the subpolar North Pacific, contributing to 
the changes in zonal mean atmospheric circulation (Hu and 
Guan 2018). Despite that the regression patterns associated 
with the PDO bear some resemblance to those related to the 
AMO, the underlying mechanism may be distinguished, and 
the atmospheric responses to the PDO are relatively weaker 
than to the AMO (Fig. 10). This evidence suggests that the 
PDO unlikely plays a dominant role since its influence is 
mainly confined over the Eurasian continent and the North 
Pacific. We also inspect the partial correlation between the 
CWF and AMO with the PDO signal removed for the whole 
analysis period 1900–2019 (Supplementary Fig. 4), and the 
seesaw pattern is still prominent and consistent with that in 
Fig. 7b. The above analysis indicates that the influence of 
AMO on the CWF seesaw and corresponding atmospheric 
circulation is stronger than the PDO, and the connection 
between CWF seesaw and AMO is prominent throughout 
the whole analysis period since 1900 and independent of 
the PDO signal.

4 � Summary and discussion

The cold wave is an important extreme weather event and 
is commonly seen in the Northern Hemisphere winter. 
It causes great social and economic damage every year, 
threatening the wellbeing of those people who live in the 
mid-high latitude regions. The cold wave frequency (CWF) 
exhibits contrasting long-term trends over Greenland and 
central Eurasia, implying a potential linkage between them. 
Other than the long-term trend, the CWF also exhibits sig-
nificant multidecadal variability. In this study, we find that 
the CWFs between Greenland and central Eurasia exhibit 
an out-of-phase relationship (r = − 0.70), referring to as 
the multidecadal seesaw. The CWF seesaw strongly corre-
lates with the Northern Hemisphere SSTs, especially over 
the North Atlantic. It is suggested that the positive phase 
of AMO induces upper-level troposphere warming over the 
mid-high latitudes and cooling over the subtropical area. 
The increased temperature gradients significantly weaken 
the westerlies over the Arctic and lead to the uplift of geo-
potential heights over high latitudes troposphere. It corre-
sponds with the increase in the lower level pressure that 
weakens the Icelandic Low and strengthens the Siberian 
High, resulting in the Greenland warming and central Eura-
sia cooling. The AMO-induced geopotential height increases 
also lead to a weakened polar vortex, which leads to more 
(less) frequent cold wave frequency over central Eurasia 
(Greenland). Moreover, the NA_EXP, which only takes the 

North Atlantic SST into consideration, successfully repro-
duces the observed seesaw pattern and the physical mecha-
nism are also well displayed. Thus, we may conclude that the 
CWF seesaw over Greenland and central Eurasia is robust 
on multidecadal time scales and the AMO plays a forcing 
role in its formation.

In this study, we also compare the relative role of Arctic 
sea ice and SST modes in forcing the CWF seesaw. It is 
suggested that the variability of Arctic sea ice does not cor-
respond with the CWF seesaw very well (r = − 0.17) for the 
whole analysis period since 1900, indicating that the CWF 
seesaw is unlikely dominated by the sea ice forcing. Despite 
the weak correlation of CWF seesaw with the whole Arctic 
sea ice, there is coherence between the CWF seesaw and 
regional sea ice around Greenland. Previous studies demon-
strated that the AMO also contributes to the low-frequency 
variability of the Arctic sea ice (Day et al. 2012; Mahajan 
et al. 2011; Miles et al. 2014; Zhang 2015). Thus, the con-
nection between the regional sea ice and the CWF seesaw 
may be related to the AMO to some extent, which needs 
further inspection. It is also worth noticing that recent stud-
ies suggested a potential impact of the North Atlantic on the 
North Pacific SST, especially during the recent decades (Li 
et al. 2016; Kucharski et al. 2016a, b; Zhang and Delworth 
2007). Considering the connection of decadal SST variations 
between these two ocean basins, the relationship between the 
PDO and zonal mean circulation and hence the CWF may 
have contributions from the North Atlantic Ocean. How to 
quantitatively distinguish the relative influence of PDO and 
AMO on the zonal mean atmospheric anomalies requires 
future investigation.
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